STAR near Term Upgrade & RD plans

F.Videbæk BNL

Introduction

- STAR prepared a decadal plan earlier this year.
 The plan is a working document covering the period 2011-2018 and ideas for transitions to eRHIC phase1.see http://www.bnl.gov/npp/docs/STAR_Decadal_Plan_Final[1].pdf
- Here we will discuss the near and mid-term, while eSTAR ideas will be presented later today.

STAR: A Typical Collider Detector

Near Term

- Forward GEM Tracker
 - 60% complete this year. 3 layer GEM with APV chip readout
- Heavy Flavor Tracker
 - Thin pixel CMOS in collaboration with IPHC.
- Muon Telescope Detector
 - Approved project in construction phase.
 - Base on long MRPC technology in coll. with China and India, and electronics developed for STAR TOF

CMOS technology

- Will be used in HFT. Much experience within project.
- Plans for using in EIC (LDRD, Elke A.)
- Common interest and exchange of status, ideas was done at St.Odile workshop in September. Could be pursued as common interest.

Pixel Detector (PXL)

8 cm radius

2.5 cm radius

Mechanical support with kinematic mounts (insertion side).

carbon fiber sector tubes (~ 200μm thick)

Insertion from one side

2 layers at 2.5 and 8 cm

5 sectors / half

4 ladders/sector

PXL Detector Design

GEM

- Expertise exists within STAR on GEM technology. Also planned for upgrades possible in the longer term, both for a pA,pp and eA program at RHIC.
- We see a need for new readout technology, the current supply of APV chips will run out (possible has).

GEM technology

- The forward GEM tracker was installed (60%) this year.
- Expertise on foils, mounting structures, and readout. (MIT, Yale, Indiana).

Muon Telescope Detector

Possible extensions: High-rate/radiation hard MRPC TOF: USTC/Tsinghua have been developing that for CBM, we are in the process of evaluating our requirements for forward direction (not so forward -2<eta<-1) [eSTAR]

STAR forward instrumentation upgrade

- Forward instrumentation optimized for p+A and transverse spin physics
 - Charged-particle tracking
 - -e/h and γ/π^0 discrimination
 - Baryon/meson separation

Forward Upgrades

- Calorimeters
 - W-cal, FAIR may be interested in this,
 - crystal calorimeter (BSO) UCLA, TAMU, PSU
- For pp and pA under consideration are:
 - Cherenkov detector. Inspired by Hermes-BRAHMS
 - Forward tracking (2.5<eta<3) GEM

Triggering Components

 Trigger is another issue since the clock is changed eSTAR; major changes in triggers are required (DSM-II may do the job), but other changes less trivial.

This may be worthwhile pursuing the so-called trigger less scheme, adapted by CBM (similar to the idea of TOF HPTDC)

Summary

- STAR is planning for the next decade
- There may be areas of common interest that should be discussed

Backup Info

 A few details on GEM (B.Surrow Star collaboration meeting Nov. 17)

FGT Technical realization / Layout

Triple-GEM: Quarter section / Disk design (2)

Component	Material	Radiation Length [%]	
Support plate	5 mm Nomex	0.040	
	2x250 μm FR4	0.257	
HV layer	5 μ m Cu	0.035	
	50 μm Kapton	0.017	
GEM foils	6x5 μm Cu (70%)	0.147	
	3x50 μm Kapton (70%)	0.036	
Readout	5 μm Cu (20%)	0.007	
	50 μm Kapton (20%)	0.003	
	5 μm Cu (88%)	0.031	
	50 μm Kapton	0.017	
	5 μm Cu (10%)	0.004	
	5 μm Cu (10%)	0.004	
Drift gas	10 mm CO ₂ (30%)	0.002	
	10 mm Ar (70%)	0.006	
Total		0.606	

FGT Technical realization / Layout

Triple-GEM: Quarter section design

